
IPAC Programming Protocol

All programming info is sent by the use of the keyboard LEDs. The three LEDs are used to
send each byte in 3 chunks. The first chunk is the 3 least significant bytes, the next chunk is
the 3 middle bytes and the third chunk is the two most significant plus one parity bit. (the
parity is actually not checked in the present I-PAC code) This is the only method of sending
data to the keyboard which is supported in the USB standard.

Bit layout:

Scroll lock Bits 0,3,6
Num lock Bits 1,4,7
Caps lock Bits 2.5.P

LED codes consist of 2 bytes as per the IBM spec. Each byte is acknowledged by the I-PAC
and the “ack” must be waited for before sending the next byte.

The download is started by the following sequence:

PC sends any LED code except “all LEDS on”
PC sends 5 successive “all LEDs on” codes.
I-PAC returns a character. This is as follows:

“Y” means “OK, ready for code block”
“J” means “Jumper set to MAME, cannot program”

If either of these codes is not received within 500ms, the program should error with a timeout.

Then a 66 byte code block is sent as follows:

Byte 1: Shift number.
Bytes 2-65: key codes
Byte 66: Checksum

The above are defined as follows:

Shift Number:
This is the number which corresponds to the I-PAC input connection which is being used as
the shift button. These numbers are shown in the right-hand column of the table below. The
number is between 1 AND 1Ch. If no shift key is desired, this should be FFh.

Key codes:
The key codes are sent starting with the top line in the table below and continuing on the
order shown. The table shows the following:
Left column: This shows the codes which are part of the default MAME set in ROM. These
are not significant here. Note the codes are the IBM internal scan codes not the codes which
are normally used when writing programs on the PC which access the keyboard. The codes
are documented in a Microsoft paper here:
http://www.microsoft.com/hwdev/input/download/translate.pdf
The code set used is “PS/2 set 2” which is the only set supported by Windows.
Next column shows the inputs as they are marked on the I-PAC PCB.
The next shows the function which is part of the MAME default set. Not significant here.

The next shows the I-PAC chip port and bit number. Not important here.
The next shows the “input number” which is used to reference the shift button.
Note the reason for the strange order of the codes is because they are determined by the
physical track layout on the PCB. The inputs were arranged to enable the PCB to be routed
100% without jumpers on a single-sided PCB.
Dummy Bits: Important. The bits marked with *** are not used in determining key codes.
They exist for the same reason as above, PCB layout, and are used for the aux keyboard input
and jumpers. These 4 bits must be set to 00 in the code block. They must not be left out
otherwise the codes will get out of sync. (Note: this is needed for backwards compatibility, I
would not have done this if starting from scratch!)
“E0” codes: In the IBM key code table there are some keys which send an “E0” in front of
the normal code. Examples are the arrow keys and right ALT and CTRL. For these codes, bit
7 should be set in the code table. For example left arrow becomes EBh instead of 6Bh. The
print-screen and pause keys have multi-byte codes and are not supported. The Numpad “/”
key has a totally weird code string and is also not supported.

Checksum:
This is calculated over the entire 65 bytes. It is a “checksum-8” which is simply adding each
byte into an 8 bit register and throwing away the carry.

I-PAC Reply:
After receiving all 66 bytes the I-PAC checks the checksum. It returns one of the following
characters:
“Y” = “all OK”
“C” = “checksum error”
The program can respond based on these codes. If it does not get any code within 500ms it
should generate a “timeout” error.

The program then needs to re-set the keyboard LEDs to the value they were before
programming.

The program needs to have a delay setting switch. This introduces a delay between the
sending of every byte. The reason for this is that some PCs have problems sending at the full
speed especially in USB mode. This seems to be caused by bugs in the PC BIOS.

Unshifted keys
DB 0F5H ;1 UP UP PORT0 BIT0 1
DB 0F4H ;1 RIGHT RIGHT PORT0 BIT1 2
DB 14H ;1 BT 1 L-CTRL PORT0 BIT2 3
DB 0EBH ;1 LEFT LEFT PORT0 BIT3 4
DB 29H ;1 BT 3 SPACE PORT0 BIT4 5
DB 0F2H ;1 DOWN DOWN PORT0 BIT5 6
DB 1AH ;1 BT 5 Z PORT0 BIT6 7
DB 11H ;1 BT 2 ALT PORT0 BIT7 8
DB 34H ;2 RIGHT G PORT1 BIT0 9
DB 12H ;1 BT 4 L-SHIFT PORT1 BIT1 A
DB 23H ;2 LEFT D PORT1 BIT2 B
DB 22H ;1 BT 6 X PORT1 BIT3 C
DB 2DH ;2 UP R PORT1 BIT4 D
DB 00 ;AUTO *** PORT1 BIT5 E
DB 2BH ;2 DOWN F PORT1 BIT6 F
DB 00 ;JP1 *** PORT1 BIT7 10
DB 1CH ;2 BT 1 A PORT2 BIT0 11
DB 16H ;START 1 1 PORT2 BIT1 12

DB 1BH ;2 BT 2 S PORT2 BIT2 13
DB 1EH ;START 2 2 PORT2 BIT3 14
DB 15H ;2 BT 3 Q PORT2 BIT4 15
DB 2EH ;COIN 1 5 PORT2 BIT5 16
DB 1DH ;2 BT 4 W PORT2 BIT6 17
DB 36H ;COIN 2 6 PORT2 BIT7 18
DB 43H ;2 BT 5 I PORT3 BIT0 19
DB 21H ;1 BT 7 C PORT3 BIT1 1A
DB 42H ;2 BT 6 K PORT3 BIT2 1B
DB 2AH ;1 BT 8 V PORT3 BIT3 1C
DB 3BH ;2 BT 7 J PORT3 BIT4 1D
DB 00 ;AUXCLK *** PORT3 BIT5 1E
DB 00 ;AUXDATA *** PORT3 BIT6 1F
DB 4BH ;2 BT 8 L PORT3 BIT7 20

Shifted keys

DB 2AH ;1 UP V PORT0 BIT0 21
DB 22H ;1 RIGHT X PORT0 BIT1 22
DB 1AH ;1 BT 1 Z PORT0 BIT2 23
DB 35H ;1 LEFT Y PORT0 BIT3 24
DB 00 ;1 BT 3 PORT0 BIT4 25
DB 1DH ;1 DOWN W PORT0 BIT5 26
DB 00 ;1 BT 5 PORT0 BIT6 27
DB 00 ;1 BT 2 PORT0 BIT7 28
DB 00 ;2 RIGHT PORT1 BIT0 29
DB 00 ;1 BT 4 PORT1 BIT1 2A
DB 00 ;2 LEFT PORT1 BIT2 2B
DB 00 ;1 BT 6 PORT1 BIT3 2C
DB 00 ;2 UP PORT1 BIT4 2D
DB 00 ;AUTO *** PORT1 BIT5 2E
DB 00 ;2 DOWN PORT1 BIT6 2F
DB 00 ;JP1 *** PORT1 BIT7 30
DB 00 ;2 BT 1 PORT2 BIT0 31
DB 16H ;START 1 PORT2 BIT1 32
DB 00 ;2 BT 2 PORT2 BIT2 33
DB 76H ;START 2 ESC PORT2 BIT3 34
DB 00 ;2 BT 3 PORT2 BIT4 35
DB 00 ;COIN 1 PORT2 BIT5 36
DB 00 ;2 BT 4 PORT2 BIT6 37
DB 00 ;COIN 2 PORT2 BIT7 38
DB 00 ;2 BT 5 PORT3 BIT0 39
DB 00 ;1 BT 7 PORT3 BIT1 3A
DB 00 ;2 BT 6 PORT3 BIT2 3B
DB 00 ;1 BT 8 PORT3 BIT3 3C
DB 00 ;2 BT 7 PORT3 BIT4 3D
DB 00 ;AUXCLK *** PORT3 BIT5 3E
DB 00 ;AUXDATA *** PORT3 BIT6 3F
DB 00 ;2 BT 8 PORT3 BIT7 40

Two-Board support (already implemented)

For programming two boards together, the first step is a once-only step done when the user
receives the board. This must be done with one board only connected. It permanently changes
the board to “board number 2”. Command-line switch is /P:2. This setting is retained by the
board for ever.
send a normal programming cycle but with the shift key number set to FE to set the board to
"board 2".

send a programming cycle with shift number set to FD resets back to board 1
(in theory never needed): Command-line /P:1

Once set to board number 2, it will respond as follows:

To program board 2,(command line switch /2) instead of initiating the program mode by
sending 5
"all on" LEDs, send instead 5 "caps lock off, other 2 LEDs on" commands
(011b)

I am going to do an I-PAC with 56 inputs which will actually be 2 I-PACs in
one. It will conform to this spec unchanged. The inputs on the second half
will be marked player 3 and player 4, coin 3, coin 4 start 3 start 4.

Future Plans:

The following functions are not implemented in IPACUTIL or in the I-PAC. If any program is
written which uses this function I will add it into I-PAC.

Macros:

Macros for a maximum of 4 keys with 3 keystrokes each can be implemented by sending a
second 16 byte code block as follows:

Initial handshake as above.
First byte of the code block is Feh to signify a macro block. (in place of the shift input number)
Follow with 4 blocks of 4 bytes for macro codes.

Follow with checksum.

In the main code block download, codes which have macros associated with them have a value
between A0 and A3 instead of the normal code. The I-PAC will recognise this range and look
in a macro table for the string. The code A0 will look at the first macro, A1 the second, etc.

Two-Board GUI (not yet implemented)

We already have the ability to program each board by running the program twice, once with the
switch “/2”. The GUI needs to be changed to program both boards in one hit. Two more pages
will be needed, for player 3,4 start 3,4 etc shifted and unshifted. (Note use of the term pages
rather than boards because this functionality will also be used for the 4-player I-PAC).
Two options: more tabs across the top or a button in the lower part, pressed gives page 2.

Things not yet thought about (ideas welcome!): Config file. How to merge and detect
single/double file etc.
Also can one program handle both single and double board set-ups or do we need 2 programs?
(much easier with 2 but then 2 code versions to support).

Config files:

A config file format with comments to help editing (ignored when programming).

Stuck-key detection: The MAC version has this and it’s a nice addition.

